

Theme: Clinical / Biology
Abstract No: PTCOG-AO2025-ABS-0144

Clinical outcomes of pediatric intracranial ependymoma treated with proton beam therapy: a multi-institutional retrospective study

Nalee Kim¹, Dong-Seok Shin², Do Hoon Lim¹, Seokyoon Kang¹, Chankyu Kim^{2*}, Joo Young Kim^{2*}
¹Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

²Proton Therapy Center, Research Institute and Hospital, National Cancer center, Goyang, Republic of Korea

I. Introduction

- Proton beam therapy (PBT)
- A preferred modality in pediatric brain tumors due to its dosi metric advantage (Bragg peaks)
- Although pencil beam scanning (PBS) has largely replace d passive scattering (PS) technique, data comparing their long-term clinical outcomes remain limited.

<u> Purpose</u>

To evaluate the long-term clinical outcomes of pediatric patients with intracranial ependymoma treated with PBT at two tertiary institutions in Korea

II. Materials and Methods

II-A. Patients

 Total 65 patients with intracranial ependymoma treated with PBT (2009–2024)

Table 1. Patient and tumor characteristics

		Total (N=65)
Disease status	Naïve	59 (90.8%)
Disease status	Recurrent disease	6 (9.2%)
0	Male	37 (56.9%)
Sex	Female	28 (43.1%)
	<3 yr	12 (18.5%)
Age at RT	≥3 yr	53 (81.5%)
-		5 [3–7]
Tumor location	Supratentorial	19 (29.2%)
	Infratentorial	46 (70.8%)
WIIIO	Grade 1–2	21 (32.3%)
WHO grade	Grade 3-4	44 (67.7%)
	Ependymoma	27 (41.5%)
Pathology	Anaplastic ependymoma	36 (55.4%)
	Subependymoma	1 (1.5%)
	Papillary ependymoma	1 (1.5%)
	Negative	63 (96.9%)
CSF seeding	Positive	1 (1.5%)
	Unknown	1 (1.5%)

		Total (N=65)
	GTR	39 (60.0%)
Surgery	NTR	12 (18.5%)
	STR	14 (21.5%)
	No residual disease	42 (64.6%)
Post-op MRI	Suspicious lesion	8 (12.3%)
	Definite residual disease	15 (23.1%)
Total RT dose		59.4 (Median)
	Local RT	57 (87.7%)
RT field	Whole brain RT	5 (7.7%)
	Craniospinal irradiation	3 (4.6%)
D4 4b1	Scattering	19 (29.2%)
Proton technique	Scanning	46 (70.8 %)
Pre-RT chemotherapy		19 (29.2%)
Post-RT chemotherapy		14 (21.5%)

II-B. Treatment planning

· Different plan parameters between two institutions

Table 3. Planning characteristics

Institution		#N of fields	Main field directions	PTV	CTV - Postop. GTV	Distal margin	Aperture margin/ Robustness (mm)	Total dose (Gy)		
National	PS	3 (2–4)	PA, RPO, LPO	CTV + 3 mm	7–10 mm	2 mm (1.0-6.0)	7.0 (5.0–12.0)	59.4 (50.4– 66.6)		
Cancer Center	PBS	3 (2–4)	RT/RPO, LT/LPO, PA/ASO	CTV + 3 mm	7–10 mm	3.5% + 2 mm (3.5% + 1–3 mm)	2.0 (1.0–3.0)	59.4 (45.0–63.0)		
Samsung Medical Center	PBS	2 (1–3)	RPO, LPO	No PTV	-	3.5% (0.0–4.5)	0	54 (30.6– 60.0)		

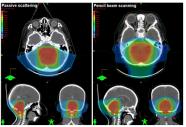


Figure 1. Examples of the proton therapy plans

II-C. Statistical analysis

- Survival curves using the Kaplan-Meier method
- Late toxicity

III. Results and Discussions

III-A. Survival outcomes

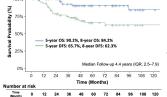


Figure 2. Overall survival blue line) and disease-fre e survival (green line) of the entire cohort

• PBT showed fav

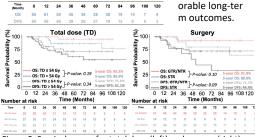


Figure 3. Survival curves for total dose (left) and surgery (right)

Table 4. Clinical outcomes

		5-year DFS	P- value	5-year OS	P- value
A	<3 yr	58.3%	0.480	66.7%	0.004
Age	≥3 yr	67.4%		97.3%	
Sex	Male	67.3%	0.640	88.5%	0.980
Sex	Female	64.0%		91.8%	
	Supratentorial	75.3%	0.980	91.7%	0.680
Location	Infratentorial	62.8%		89.8%	
Disease status	Naïve	68.3%	0.570	93.4%	0.055
Disease status	Recurrent disease	50.0%		66.7%	
WHO grade	Grade 1-2	59.8%	0.810	94.1%	0.320
WHO grade	Grade 3-4	68.9%		88.4%	
MRI based surgical	No residual/suspicious	71.1%	0.160	92.6%	0.140
extent	Definite residual disease	49.5%		81.8%	
Interval between op and	<45 days	59.0%	0.470	85.8%	0.140
PBT	≥45 days	73.9%		95.5%	
Proton technique	Scattering	63.2%	0.650	84.2%	0.160
Proton technique	Scanning	67.4%		93.4%	
PBT field	Local RT	63.0%	0.210	88.4%	0.290
PB i field	Whole brain/CSI	87.5%		100.0%	
D DDT -1	No	58.2%	0.140	88.4%	0.440
Pre-PBT chemotherapy	Yes	78.3%		93.8%	
Post-PBT	No	63.0%	0.750	89.8%	0.680
chemotherapy	Yes	71.4%		91.7%	

- Although a significant difference was observed at age 3, it was likely due to a change in treatment methods.
 - No statistically significant difference in survival outcome s between PS and PBS

III-B. Toxicity

Table 5. Treatment-related late toxicity

rable by readment relat	ca late tomore	1	
	Scattering (N=19)	Scanning (N=46)	P-value
Grade 2 or worse late toxicity	6 (31.6%)	1 (2.2%)	0.001
Brainstem necrosis	2 (10.5%)	1 (2.2%)	0.144
Hypopituitarism	4 (21.1%)	0 (0.0%)	0.002

- Statistically significant difference in grade 2 or worse lat e toxicity between proton techniques
- However, this may have been affected by other factors s uch as RT dose and chemotherapy, rather than the prot on technique alone.

IV. Conclusion

- PBT provided favorable long-term outcomes in pediatric intracranial ependymoma.
- Both PS and PBS techniques provide favorable survival outcomes.

Funding: This research was supported by the National Cancer Center Research Fund (Grant No. NCC 2410942).